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Multiple Parameter Structure of Mielnik’s
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Within unbroken SUSYQM and for zero factorization energy, I present an iterative
generalization of Mielnik’s isospectral method by employing a Schrödinger true
zero mode in the first-step general Riccati solution and imposing the physical
condition of normalization at each iterative step. This procedure leads to a well-
defined multiple-parameter structure within Mielnik’s construction for both zero
modes and potentials.

The supersymmetric procedures are an interesting and fruitful extension
of (one-dimensional) quantum mechanics. For recent reviews see ref. 1. These
techniques are, essentially, factorizations of one-dimensional Schrödinger
operators, first discussed in the supersymmetric context by Witten in 1981
[2], and well known in the mathematical literature in the broader sense of
Darboux covariance of Schrödinger equations [3].

In 1984, Mielnik [4] introduced a different factorization of the quantum
harmonic oscillator based on the general Riccati solution. As a result, Mielnik
obtained a one-parameter family of potentials with exactly the same spectrum
as that of the harmonic oscillator. However, even though in the same year Nieto
discussed the connection of such a factorization with the inverse scattering
approach, and Fernández applied it to the hydrogen atom case, Mielnik’s
result remained a curiosity for a decade during which only a few authors paid
attention to it. On the other hand, constructing families of strictly isospectral
potentials is an important possibility with many potential applications in
physics [1]. This explains the recent surge of interest in this supersymmetric
issue [5]. My goal in this work is to give a multiple-parameter generalization
of Mielnik’s procedure based on the ground-state function of any soluble
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one-dimensional quantum mechanical problem. This is just a form of Crum’s
iterations, i.e., repeated Darboux transformations. Some work along this line
has already been done by Keung et al. [6], who performed an iterative
construction for the reflectionless, solitonic, sech potentials and the attractive
Coulomb potential, presenting relevant plots as well. However, they first go
n steps away from a given ground state and only afterward perform the n
steps backward. On the other hand, Pappademos et al. [7], working in the
continuum part of the spectrum, got one- and two-parameter supersymmetric
families of potentials strictly isospectral with respect to the half-line free
particle and Coulomb potentials and focused on the supersymmetric bound
states in the continuum. Their procedure is closer to the method I will present
in the following. For more recent work see Bagrov and Samsonov [8],
Fernández et al. [9], Junker and Roy [10], and Rosas-Ortiz [11].

In the following, I first briefly recall the mathematical background of
Mielnik’s method and next pass to a simple multiple-parameter generalization
for the particular but physically relevant zero-mode case.

I begin with the “fermionic” Riccati (FR) equation y8 5 2y2 1 V1(x)
[the “bosonic” one being y8 5 y2 1 V0(x)] for which I suppose to know a
particular solution y0. Notice also that I do not put any free constant in the
Riccati equations, that is, I work at zero factorization energy. Let us seek
the general solution in the form y1 5 w1 1 y0. By substituting y1 in the FR
equation, one gets the Bernoulli equation 2w81 5 w2

1 1 (2y0)w1. Furthermore,
using w2 5 1/w1, we obtain the simple first-order linear differential equation
w82 2 (2y0)w2 2 1 5 0, which can be solved by employing the integration
factor F0(x) 5 exp (2 *x

c 2y0), leading to the solution w2(x) 5 (l 1
*x

c F0(z) dz)/F0(x), where l occurs as an integration constant. In applications
the lower limit c is either 2` or 0 depending on whether one deals with
full-line or half-line problems, respectively. In the latter case, l is restricted
to be a positive number. Thus, the general FR solution reads

y1 5 y0 1

exp(2#
x
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l 1 #
x
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(F0)2 (1)



Mielnik’s Isospectrality in Unbroken SUSYQM 107

where D 5 d/dx. It is easy to reach the conclusion that the particular FR
solution y0 corresponds to Witten’s superpotential [2], while the general FR
solution y1 5 y80 1 F0 /(l 1 *x

c F0) is of Mielnik type [4]. This is especially
clear when one is able to identify f0 5 F 1/2

0 with the quantum mechanical
ground-state wavefunction u0 of the problem at hand. This requires suitable
asymptotic behavior of the Riccati solution y0 and applying the normalization
condition to f0, turning it into a true zero mode. As is well known, this case
corresponds to the so-called unbroken SUSYQM, which will be assumed to
hold henceforth. Moreover, 22y80 ([ 22(d 2/dx2) ln F 1/2

0 ) is the Darboux
transform contribution to the initial Schrödinger potential, i.e., V1 5 V0 2
2y80. Also, the modes

ul(x) 5
F 1/2

0

l 1 #
x

c

F0

5
u0

l 1 #
x

c

u2
0

(2)

can be normalized and therefore considered as ground-state wavefunctions
of the bosonic family of potentials corresponding to Mielnik’s parametric
superpotential. The one-parameter true zero modes read

vl(x) 5
!LF 1/2

0

l 1 #
x

c

F0

5
!Lu0

l 1 #
x

c

u2
0

(3)

where !L 5 !l(l 1 1) is the normalization constant.
Moreover, 22y81 can be thought of as the general Darboux transform

contribution to the initial potential generating the bosonic strictly isospectral
family, which reads

V M
l 5 V0(x) 2 2

d 2

dx2 ln1l 1 #
x

u2
02 5 V0(x) 2

4u0u80

l 1 #
x

u2
0

1
2u4

0

1l 1 #
x

u2
02

2

(4)

This family of potentials can be seen as a continuous deformation of the
original potential, because the latter is included in the infinite limit of the
deforming parameter l and v6` 5 u0 as well. In more intuitive terms, Mielnik’s
method based on an initial Schrödinger true zero mode may be called a
double Darboux technique of deleting followed by reinstating a nodeless
ground-state wavefunction u0(x) of a potential V0(x) by means of which one
can generate a one-parameter family of isospectral potentials Vl(x), where l
is a labeling, real parameter of each member potential in the set.
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One can go on with one of the strictly isospectral bosonic zero modes
ul1 5 u0/(l1 1 *x

c u2
0) (i.e., by choosing l 5 l1) and repeat the strictly isospec-

tral construction, getting a new two-parameter zero mode

ul1,l2 5
ul1

l2 1 #
x

c

u2
l1

5
u0

1l1 1 #
x

c

u2
021l2 1 #

x

c

u2
l12

(5)

The two-parameter true zero modes read

vl1,l2 5
!L1L2 u0

1l1 1 #
x

u2
021l2 1 #

x

v2
l12

(6)

The resulting two-parameter family of strictly isospectral potentials will be

Vl1,l2 5 V0 2 2
d 2

dx2 lnF1l1 1 #
x

u2
021l2 1 #

x

v2
l12G (7)

At the ith-parameter level, one will have

Vl1,l2,...li 5 V0 2 2
d 2

dx2 lnF1l1 1 #
x

u2
021l2 1 #

x

v2
l12

. . . 1li 1 #
x

v2
l1...li212G (8)

and

vl1...li 5
!L1L2 . . . li u0

1l1 1 #
x

u2
02 . . . 1li 1 #

x

v2
l1...li212

(9)

Explicit formulas for the parametric zero modes can be obtained if one
uses a notation based on the integration factor *x

c F0 5 ^(x) 2 ^(c) 5
Dx^. Then

vl1(x) 5
!L1 u0

l1 1 Dx^
(10)

Next, one can calculate
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Thus

vl1,l2(x) 5
!L1L2u0

l1l2 1 (l1 1 l2 1 1)Dx^
(12)

At the next step one gets

vl1,l2,l3(x)

5
!L1L2L3u0

l1l2l3 1 (l1l2 1 l2l3 1 l3l1 1 l1 1 l2 1 l3 1 1)Dx^
(13)

and the general formula at the i level can be written down in the form

vl1,l2,...,li(x) 5
!L1, . . . Liu0

C (i)
1 1 C (i)

2 Dx^
(14)

where the first coefficient in the denominator is the product of all parameters,
whereas the second coefficient is just the sum over all the rest of lower order
Viete-type expressions in the parameters. By the same token, one can write
a general formula for the strictly isospectral potentials

Vl1,l2,...,li 5 V0 2 2D2 ln[C (i)
1 1 C (i)

2 Dx^]

5 V0 2
4C (i)

2 u0u80
C (i)

1 1 C (i)
2 Dx^

1
2(C (i)

2 )2u4
0

(C (i)
1 1 C (i)

2 Dx^)2 (15)

which may be considered as the generalization of the furthest right-hand
side of Eq. (4) and represents a simple generalization of Mielnik’s one-
parameter potentials.

Since L1 . . . Li 5 C (i)
1 (C (i)

1 1 C (i)
2 ), one might think that there is nothing

new in (14) and (15) with respect to a common Mielnik solution with an
effective parameter l(i)

eff 5 C (i)
1 /C (i)

2 . However, I will argue that by performing
such an equivalence one loses a certain type of information. This information
is a consequence of the symmetry of (14) and (15) in the space of parameters.
One can see that the subindices of any pair of parameters can be interchanged
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without affecting the formulas. Thus, each l parameter can be varied indepen-
dently of the others, making it possible to put questions related to the following
type of situation. Suppose we construct two Mielnik potentials corresponding
to l1 and l2 and ask what is the potential bearing true zero modes that for
l1 → 6` goes to the Mielnik case for l2, whereas for l2 → 6` it goes to
the Mielnik case for l1. The answer is provided by the construction of this
work and corresponds to the particular case Vl1,l2 bearing the true zero modes
vl1,l2. Indeed, as one can easily check, vl1,6` 5 vl1 and Vl1,6` 5 V M

l1, whereas
v6`,l2 5 vl2 and V6`,l1 5 V M

l2. In the general case, one starts with a set of i
Mielnik potentials corresponding to i fixed values of Mielnik’s parameter
and asks the same question, this time for the set of i asymptotic limits. The
answer is given by (14) and (15) and cannot be provided if one works with
only one effective parameter unless its multiple-parameter value found above
is used.

Another interesting remark is the one-to-one relationship between any
polynomial equation a0 x i 1 a1 x i21 1 . . . 1 ai 5 0 and the present iterative
construction. If we consider the l parameters as the zeros of such arbitrary
polynomials, we can write (14) as

vl1,l2,...,li 5
!(21)iai ((i

0 (21)iai)u0

(21)iai 1 ((i21
0 (21)iai)Dx^

(16)

and in (15) one can substitute the same type of denominator as in (16). There
is only one constraint on the employed polynomials, which one should impose
in order to avoid possible singularities. Usually the integral Dx^ in the
denominators of (15) and (16) is of the kink type, i.e., it may be written in
the form a 1 bK(x), where the function K(x) has the kink behavior, taking
values between 21 and 11, and a and b are some constants, of which a
may be zero. Then the allowed intervals for the effective parameter are
l(i)

eff . b 2 a and l(i)
eff , 2(b 1 a). When a 5 0 one gets .l(i)

eff. . b.
It is worthwhile to mention that the previous iteration process can be

understood most easily from the Riccati equation standpoint as follows. To
get, for example, the two-parameter zero mode, one should start again with
the FR equation y8 5 2y2 1 V1(x) and take as the known particular solution
y(1)

p 5 y0 1 yl1, where yl1 5 F0 /[l1 1 *x
c (F0)]. The intermediate Bernoulli

equation will be 2w81 5 w2
1 1 2y(1)

p w1. This is turned into a first-order differ-
ential equation by the inverse function method. The integration factor of the
latter is Fl1 5 exp(2*x

c 2y(1)
p ) and the solution for the first-order differential

equation can be written w2 5 (l2 1 *x
c Fl1dz)/Fl1. From this presentation it

is clear how one should proceed for an arbitrary step. Also, the logarithmic
derivative notation in Eq. (1) is equally convenient to have a clear image
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Fig. 1. Two-parameter strictly isospectral harmonic oscillator potentials (m 5 v 5 1) for fixed
l2 5 0.2 and l1 P [0.1, 5]. They are identical to Mielnik harmonic oscillator potentials with
l(2)

eff P [0.0154, 0.1613].

of the iteration process. Thus, one can generate hierarchies of parametric
Schrödinger zero modes of any desired order by means of the Riccati
connection.

The parametric normalization deletes the interval [21, 0] from the
parameter space of l(i)

eff. At the 21 limit, one can make a connection with
the Abraham–Moses isospectral technique [12], whereas at the 0 limit the
connection can be done with another isospectral construction developed by
Pursey [13]. This connection is only from the point of view of the potentials;
the zero modes as worked out here just disappear.

In conclusion, I have shown explicitly the way Crum’s iteration works
when the general Riccati solutions (general superpotentials) at zero factoriza-
tion energy are based on the corresponding Schrödinger ground-state wave-
functions, obtaining general formulas for this simple ‘generalization’ of
Mielnik’s one-parameter SUSYQM isospectrality. Plots of the two-parameter
formulas for the harmonic oscillator case are presented in Fig. 1–5. One may
consider the results of this work as pointing to an interesting hierarchical
structure within the general Riccati solution produced by a particular type
of repeated Darboux transformation when the normalization condition of
quantum mechanics is taken care of at each iterative step.
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Fig. 2. The corresponding true zero modes.
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Fig. 3. The two-parameter true zero modes at fixed x 5 21.4 for the two-parameter formulas.
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Fig. 4. Same modes as in Fig. 3 at fixed x 5 21.6.

Fig. 5. Same modes as in Fig. 3 for fixed x 5 21.8.
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